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COVERINC TIE CIRCLE WITH RANDOM ARCS

OF RD SIZES

by

Andrew F. Siegel

and

Lars Holst

ABSTRACT

Consider the random uniform placement of a finite number of arcs on

the circle, vhere the arc lengths are sampled from a distribution on

(0,1). We provide exact formulae for the probability that the circle

is completely covered and for the distribution of the number of uncovered

gaps, extending Stevens' (1939) formulae for the case of fixed equal arc

lengths. A special class of arc length distributions is considered, and

exact probabilities of coverage are tabulated for the uniform distribution

on (0,1). Some asymptotic results for the number of gaps are also given.
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1. Introduction

Many authors have considerd problems relating to the coverage of a

circle by random arcs of equal sizes, including Whitvorth (1897), Stevens

(1939), Fisher (1940), Votaw (1946), Domb (1947), Flatto and Konhela

(1962), Solomon (1978), Holst (1980 a,b,c and 1981), and Siegel (1978b

and 1979). When the arc lengths are not equal, fey results are known.

Conditions under which a given infinite sequence of arc lengths ill

almost surely cover the circlewere studied by Dvoretzki (1956), Mandelbrot

(1972), Shepp (1972), and others. However, when the nber of arcs is

finite, there is no known simple formula for the coverage probability

(Shepp, 1972), although some results are available concerning the amount

of the circle covered in this case (Yadin and Zachs, 1980). Some approxi-

mations to the coverage probability using moments and simulations were

provided by Siegel (1978a).

We provide an exact formula for the probability of covering the

circle with n random arcs of random independent sizes in Section 2.

The formula is derived by considering the number of uncovered Saps,

thereby extending Stevens' (1939) formula to the case of random arc

length. Feasibility of computation is demonstrated in Section 3 for

the special case of arcs of uniform lengths and a related class of dis-

tributions. Some asymptotics concerning the number of uncovered gaps

are obtained in Section 4.

1i



2. Distribution of the Number of Gaps and the Probability of Coverage

Consider n arcs placed uniformly and Independently at random on a

circle of circumference one. Let the arc lengths be independent and iden-

tically distributed random variables L, L. ,n , chosen from the cuma-

lative distribution function F on (0,1). The number of uncovered gaps

will be denoted N . Note that N - 0 is the event of complete coverage.

An example with N4  2 is illustrated in the figure.

Theorem 2.1. The distribution of Nn is given by

0(nUU k I C) (-:) 'k-i k (2.1)

where
k ~il[k ujn-

--k i [ j J F(V)dv] du (2. Z)

- E{ 11 F(Sk] A~ - EL(SJkL)+} (2.3)

and Slk ... , S k denotes the spacings between k independent uniform

points on the circle. The positive part function is (t)+ - ax(t,0).

The first terms are

Z0

I "11 - E(L)]n-I

2 F(u)F(l-u) I(7f F(v)dv + f F(v)dvj du

and the first moment is E(N n - u[l - E(L)J n-l

2
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Figure. The event of N4 
= 2 uncovered gaps when n-4 random arcs are

placed on the circle.

Corollary. The probability of completely covering the circle is

P nO k k Fu I F(v)d v] du. (2.4)

The first m terms suffice whenever arcs must have length at least 1/=

because the product term will be zero for the higher terms.

Proof. Consider the events Ai - "clockwise endpoint of arc i is

not covered". The figure shows the case in which A, and A4  occur.

Define k A )" Using reasoning analogous to Stevens (1939,

formula 4.62) we obtain (2.1). To calculate k' observe that

3



k
k-?L[fl (Li _ Sik n B nk) (2.5)

where S IV ..., Skk are the lengths of the gaps between clockwise and-

points of the first k gaps and inek is the event "none of the arcs

k, ... , n cover the clockwise midpoints of arcs 1, ..., k." Condi-

tioning on S1k . Skk. indepedence, of the are lengths gives us

k
- E (n-k sik ..., Skk) 101. (2.6)

1-1

An additional arc will fall within one of the first k gaps with condi-

tional probability

J, ( jkL+Slk, ... S k

Again using independence of arc lengths, we have

(B _kISlk, ... , I EL(SL) i (2.7)

which, together with (2.6) establishes (2.3). Writing expectations as

Integrals and ntegrating by parts we obtain (2.2). because N. is the

sum of indicator functions - ) I(Ai), its first moment is
1-1

E(Nn )  nP(Ai) - n& - nl - E(L))n -1 . 0

The formula (2.4) for coverage probability does reduce to Stevens'

(1939) formula when arcs have fixed length a. In this case F(x) -

I(x > a) and from (2.3) we have

4
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F I(S ~1 ESal
k U ik-

C.

The product term allows us to drop the positive part to obtain

k [W(all sik _> a)] (1-ka)f
n-k

which reduces to

- (l-ka)" - '. (2.8) K

Substituting this into formula (2.4) we obtain Stevens' formula for equal

arcs:

P(cover) - k (_,)I , ,_an-i

k-Ok+

3. Uniform Arc Length and Related Distributions

If the cumulative distribution function of the arc length has the

special form

F W 0 < x < 1 (3.1)

for some a > 0, then the probabilities in Section 2 can be simplifled

by performing the integrations.

Theorem 3.1. If F(x) - x, then Ck from Theorem 2.1 is

(k-)! n-k\ k
Ck " (a+l)n-ik r((a+l)n] k ai1 [2l.. (3.2)

( ,n-k)
i-i

where the sum is over nonnegative integers m. An equivalent formula

with fewer terms to sum is obtained if we define V - P(rotJ):

51
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k

ji r (a+l) (m+l)].
i-1

Corollary. The probability of covering the circle with n random

arcs whose lengths are chosen independently from the uniform distribution

on (0,1) is F,

P(cover) -l+ (2n- n I 2n-k (3.4)
(2-n-l)! I-n-k (mk-I (n-k) k 2 k , .,( X m 'mn-k)

k
11 (2mj+l)!

i.-1

Despite its complicated appearance, it was tabulated on a hand cal-

culator for up to 10 arcs, as shown in the table, second column. The

third column allows comparison with the case of fixed arcs of the expected

length, 1/2. We see that the differences in coverage probability are

most evident when n is small.

To further assess the differences between placing fixed and random

arc lengths, column 4 of the table lists the fixed arc length whose cover-

age probability is equal to that of the uniform random arc lengths. These

equivalent fixed arc length values converge to .5, again suggesting the

similarity as n increases between the random and fixed arc length cover-

age probabilities.
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Table.

Coverage Probabilities fixed arc lengths

random fixed needed to achieve
arc lengths arc lengths coverage probability

_ __00.1) .5 listed for!t(0,1) arcs

1 0 0

2 .167 0 .583

3 .383 .250 .547

4 .569 .500 .524

5 .730 .688 .518

6 .834 .813 .512

7 .901 .891 .508

8 .943 .938 .506

9 .967 .965 .505

10 .982 .980 .504

Proof of Theorem 3.1. Substituting F(x) - x into (2.3) and per-

forming the inner expectation, we have

!1 1 k U •S \N-

k
Distributions are preserved by the representation Sik ' Xi/ j X ) where

J-l

X1, ..., Xn are independent exponential random variables with mean 1. More-Sk
over, (Sk,' ... , Sk) is independent of Z X4, so we can show that

J-1

E 1 X

" • ~,(3.5)

E X

7
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k
The distribution of I X. is Camma(k,l) so the denominator of (3.5)

.1- J

is

ri (,+1) ni
(k-i) . "(3.6)

The numerator of (3.5) can be written as

[rc+ )k Ic nk (3.7)
(01)" -i

where Y1, •', Yk are independent Gamma (a+l,l). We do a multinominal

expansion to obtain

[rc.~)k n-k kc
n-ka 1) 1111 E(Y 1 ) . (3.8)0a+1)n -  ( ?. -ik ) (mv,.mk) i-1(3)

The expectation can be evaluated:

[(i r (+l) (m+ 1) ]/r(a+l) (3.9)

Substituting (3.9) in (3.8), substituting the resulting numerator and

the denominator (3.6) for the ratio in (3.5), we have the result (3.2).

Formula (3.3) is obtained by combining summands with the same set of

exponents (mi ... , mk) and the same multiplicities. 0

REMARK: In a similar way, distributions of the form F(x) " l-(l-x)n,

o<x<l, n-l,2,... can be treated.

8I
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4. Asymptotic Results

Consider the situation of Section 2, but let the arc lengths be chosen

from the distributions F which tend to zero in a suitable way when n - -.
n

Theorem 4.1. Suppose that the arc lengths 0 < Lln, L2n, ... Lnn

are independent, identically distributed, random variables with the distribu-

tion F such that
n

(A) E(N n ) - n (l-v n )n -1 n - C (4.1)

where Vn = E(L jn), and for each k-2,3,... we have

(B) f(E{Fn(X/k)exp(n kl-Fn())/(l-kn)+ iu(X-l))} kdu
X/k

21kk e-k / k!

1 , n ,(4.2)

where X is exponential with mean 1. Then

D
N n- Poisson (X), n- . (4.3)n

Proof. By the Lemma below it follows that we need only establish that

for all k-1,2,3,...,

n kEk P. Xk , n - o ,(4.4)

where was defined in Theorem.2.1. By the condition (A) this is

true for k-l. Using the identity (t)+ - t+ (-t)+, we see that

-9-



U = nZkEE (l-kU + CE(L -S )n-k Fn(Skn j=I ] nj

n k (l-kp n) n-k.(45

k nkk
E (S 1+ EL(L n jk)/ (l-k)j )) ri F 4.S )

J~l J-1

By (4.1) it follows that

k n -). 0. (4.6)

Hence (4.4) is true if for each k-2,3,...

l+nn-k k )

ES  n)lYn F n(Sjk) 1, n - (4.7)

where we have introduced the random variable
1

k k 1
Yn - Z E.(L jn-S Jk ) /(l-ku) = E J (1-Fn ())dV/(l-kn). (4.8)

jnl ikl n S jkn

As 1+x< ex for x~o it follows that (4.7) holds if

nY k "\
ESt nj1iFn(Sjk)) - 1, n - - (4.9)

In a similar way as in Holst (1981) Lemmas 2.1 and 3.1 one can prove that
nYnjl k ) - i

ES I(e a F (S (2 kke k/k!)

E n Xk) exp(nJ L-F n(t))dt/(l-ku n)+iu(X-1) I ]kdu (4.10)X/k

Combining (4.9) and (4.10) with the Assumption (B) proves the assertion.

-10-

.... 
i -- -..



Remark. From the proof it actually follows that the probability

generating function of Nn converges to that of a Poisson(X), provided (4.1)

and (4.2) are fulfilled.

Corollary. If the arcs have equal lengths in and E(N ) - A , then

D
N - Poisson (X), n* .n

Proof. In this case the integral in (4.2) simplifies to

W~ COk
J xp (iu(x-l)-x)dxl kdu

c o ku

- J(exp-iu-k n+iukun }/(l-iu)] kdu

Jfe-iU /(l-iu)] kdu 27r kk e /k! , n

-k

As (l-iu)-k is the characteristic function of a Gamma (k,l) distribution. [

In a similar way by explicit calculation of the integrand in (4.2) one

obtains:

Corollary. Let the arc lengths take the values o<alpn< ... < ar U n with

probabilities Pl, ..., Pr where pl+ ... + Pr - 1 and alpl+ ... + arp r -

If -n o such that E(Nn) X , then
n n

D
N -Poisson (A), n - .

n

-11-



Lea. Let (Il., ..., In), n-i, 2, ... be a triangular array of

exchangeable random variables that take only the values 0 or 1. Suppose

there exists a A > 0 such that for every fixed k-i, 2, ... we have

k 1k i).k
n E I as n-. (4.11)

Then

n D
z Iin * Poisson (A) as n -* o (4.12)
i-1

Proof. Consider the Stirling number of the second kind S(m,k) -

"number of partitions of m distinct elements into k sets." By exchange-

ability it follows that the mth moment of the left hand side of (4.11) is

E Ii - Z S(mk) (n-k)! E[ Ii
1~ I k-1 "E-

th
which tends to the m moment

Z? S(m,k) Xk (4.13)

k-i

of a Poisson (A) random variable as n , establishing (4.12) by conver-

gence of moments. 03
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